
Logic and Discrete Structures -LDS

Course 7 – Graphs

Ș.l. dr. ing. Cătălin Iapă

catalin.iapa@cs.upt.ro
1

What have we covered so far?

Functions

Recursive functions

Lists

Sets

Relations

Dictionaries
2

Graph theory

What is a graph?

Paths and cycles in graphs

Representing and traversing graphs

Graphs in PYTHON

Exercises with graphs in PYTHON
3

Graph theory

Graph theory is the mathematical study of graphs
(representing relations between objects).

Graphs are one of the objects of study in discrete
mathematics.

From this evolved network science: the study of
complex networks.
Examples: computer, telecommunications, energy,
biological, social networks, etc.

4

Graph theory

"the study of
representations as
networks of physical,
biological and social
phenomena, leading to
predictive models of these
phenomena".

[US National Research
Council]

5Imagine: https://en.wikipedia.org/wiki/Social_network

A challenge in sociology

One of the most discussed, most studied questions
of all time in sociology is:

On average, over a lifetime, who has more partners
of the opposite gender, men or women?
(Here, we only take into account relationships
between partners of different genders to make it
easier for us to approach the problem
mathematically.)

What do you think?

6

A challenge in sociology

Generally speaking, it is considered in literature
that men have more opposite-gender partners
than vice versa.

This is also because there are societies where
polygamy is allowed, and there, as a rule, men
have more women, not vice versa.

7

A challenge in sociology

We have 2 studies that aimed to answer this
question:

1. The University of Chicago interviewed over
2500 people in a study conducted in the US.

The study reveals that men have on average 74%
more opposite gender partners than women.

8

A challenge in sociology

2. Another study was also done in America by ABC News.

They questioned 1500 people in 2004. They concluded
that men have an average of 20 partners of the opposite
gender, while women have an average of only 6 over their
lifetime.

From this it follows that men have, on average, 233%
more partners of the opposite gender than women. ABC
News says they have a margin of error of just 2.5%.

This kind of problem can be addressed very well using
graphs.

9

Graph theory

What is a graph?

Paths and cycles in graphs

Representing and traversing graphs

Graphs in PYTHON

Exercises with graphs in PYTHON
10

What is a graph?

Informally, a graph represents a lot of objects
(nodes, vertices, points, etc.) between which
there are certain connections (lines, edges, arcs,
etc.).

11Imagine: http://en.wikipedia.org/wiki/File:6n_graf.svg

What is a graph?

Formally, a graph G is an ordered pair G=(V, E)

V - the set of Vertices and

E - the set of Edges

- a set of pairs (u, v) ∈ V × V

12Imagine: http://en.wikipedia.org/wiki/File:6n_graf.svg

What is a graph?

The set of nodes must be a finite non-empty set, so
it is not possible to have a graph without vertices,
but it is possible to have a graph without edges.

So a graph can be represented as a geometric figure
made up of points (corresponding to
vertices/nodes) and straight or curved lines
connecting these points (corresponding to edges or
arcs).

13

Map of tram routes in Timisoara

14Imagine: http://www.ratt.ro/reteaua.html

Graphs - general notions

The order of a graph is called the number of
vertices of the graph.

A vertex v is incident to an edge r if edge r
touches vertex v - v ∈ r.

Two vertices are called adjacent if there is an
edge connecting them.

Two edges are adjacent if there is a vertex
incident to both edges.

15

Graphs - general notions

The degree of a vertex is the number of edges
that are incident to that vertex.

Adding the degrees of all the vertices in graph G
gives twice the number of edges.

16

Directed and undirected graphs

A graph is directed if its edges are ordered pairs.

A graph is undirected if its edges are unordered
pairs (no matter the direction of traversal).

17
Imagini: http://en.wikipedia.org/wiki/File:Directed.svg
http://en.wikipedia.org/wiki/File:Undirected.svg

Graphs and relations

The set of edges of a graph forms a relation E ∈ V x
V over the set of nodes.
An undirected graph can be represented by a
symmetric relation:

∀u, v ∈ V . (u, v) ∈ E → (v, u) ∈ E

In a directed graph, E is any relation (it doesn't have
to be symmetric, but it can be)
Reciprocally, any binary relation can be seen as a
directed graph for (u, v) ∈ E we introduce an edge
u → v

18

A challenge in sociology

Let's go back to the problem in sociology. How can we
represent the partner problem with graphs?

If we represent the set of men (below left) and the set of
women (below right), we can plot such a graph:

19

A challenge in sociology

In Romania, the number of nodes (persons) is 19,186,201
(on 1 January 2021) according to data from the National
Institute of Statistics, of which approximately 9.34 million
men and 9.84 million women.

Can we know the number of edges of this graph?

No, but we would have to calculate the ratio of average
male node degrees to average female node degrees:

R =
𝑀𝑚𝑒𝑛

𝑀𝑤𝑜𝑚𝑒𝑛

R = 1,74 according to University of Chicago study

R = 3,33 according to ABC News study

20

A challenge in sociology

𝑀𝑚𝑒𝑛 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠

𝑁𝑜. 𝑜𝑓 𝑚𝑒𝑛′𝑠 𝑛𝑜𝑑𝑒𝑠
,

𝑀𝑤𝑜𝑚𝑒𝑛 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠

𝑁𝑜. 𝑜𝑓 𝑤𝑜𝑚𝑒𝑛′𝑠 𝑛𝑜𝑑𝑒𝑠

R =
𝑀𝑚𝑒𝑛

𝑀𝑤𝑜𝑚𝑒𝑛
= ൘

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠

𝑁𝑜. 𝑜𝑓 𝑚𝑒𝑛′𝑠 𝑛𝑜𝑑𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠

𝑁𝑜. 𝑜𝑓 𝑤𝑜𝑚𝑒𝑛′𝑠 𝑛𝑜𝑑𝑒𝑠

=
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠

𝑁𝑜. 𝑜𝑓 𝑚𝑒𝑛′𝑠 𝑛𝑜𝑑𝑒𝑠
∗
𝑁𝑜. 𝑜𝑓 𝑤𝑜𝑚𝑒𝑛′𝑠 𝑛𝑜𝑑𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠

=
𝑁𝑜. 𝑜𝑓 𝑤𝑜𝑚𝑒𝑛′𝑠 𝑛𝑜𝑑𝑒𝑠

𝑁𝑜. 𝑜𝑓 𝑚𝑒𝑛′𝑠 𝑛𝑜𝑑𝑒𝑠
=
9,84 𝑚𝑖𝑙

9,34 𝑚𝑖𝑙
= 1,05

So we have shown mathematically, using graph theory, that in
Romania the number of relationships that men have with
opposite gender partners is only 5% higher than the number
of relationships that women have. 21

Graph theory

What is a graph?

Paths and cycles in graphs

Representing and traversing graphs

Graphs in PYTHON

Exercises with graphs in PYTHON
22

Paths in graphs

A path in a graph is a sequence of edges connecting a
sequence of vertices x0, . . . xn with n ≥ 0 such that (xi , xi+1) ∈ E
for any i < n.

x0 → x1 → . . . → xn−1 → xn

We can define a path in both directed and undirected graphs.

A path has an initial vertex x0 and a final vertex xn.

The length of a path is the number of edges traversed.in
particular, it can be zero(a vertex x0, with no edges)

23

Cycles in graphs

A cycle is a non-zero length path in which the
start and end vertices are identical (the same).

We often work with simple cycles:

Cycles in which edges and vertices do not occur
more than once (except for the start node which
is also the end node).

24

Complete graphs and connected
components

A graph is connected if it has a path from any vertex to
any vertex. (general definition, depends on the notion of
path - in directed or undirected graph)

For undirected graphs: A connected component is a
maximal connected subgraph.

- so it has a path between any two vertices
- no more vertices could be added by keeping it

connected
A graph with n vertices and e edges has a number of
connected components ≥ n - e. It can be proved by
induction.

25

Directed graphs: weakly connected and
strongly connected

A directed graph is weakly connected if it has an
undirected path from any vertex to any vertex, and
strongly connected if it has a directed path from any
vertex to any vertex.

A strongly connected component is a maximal
strongly connected subgraph.

Strong connected components are disjoint:

R(u, v) : path(u, v) and path(v, u) is an equivalence
relation, and strongly connected components are
equivalence classes

26

Directed graphs: weakly connected and
strongly connected

The oriented graph in the figure is weakly
connected. It has three strongly connected
components.

27Imagine: http://en.wikipedia.org/wiki/File:Scc.png

Determination of connected
components (undirected graph)

Connected components are equivalence classes

- any node is in its own component - reflectivity

- a path from u to v is also a path from v to u – symmetry

- path(u, v) ∧ path(v, w) → path(u, w) – transitivity

We determine the connected components by traversing
the edges of the graph:

- initially, each node is in its own component

- for an edge (u, v) we join the components of u and v

28

Eulerian paths (in undirected graphs)

The degree of a vertex (in an undirected graph)
is the number of edges touching the vertex.

An Eulerian path is a path that contains all edges
of a graph exactly once.

An Eulerian cycle is a cycle that contains all
edges of a graph exactly once.

29

Eulerian paths (in undirected graphs)

An undirected connected graph has an Eulerian
cycle if and only if all vertices have even degree.

An undirected connected graph has an Eulerian
path (but not a cycle) if and only if exactly two
vertices have odd degree.

(the first and last vertices in the path)

30

Examples: maps as weighted graphs

Weighted graph: each edge has an associated
numerical value called cost (can represent length,
capacity, etc.)

31Hartă (inexactă) din Russell & Norvig, Introduction to AI

Exemples: Control flow graph
Representation of programs in compilers, code analyzers

- nodes: instructions or linear sequences of instructions
(basic blocks)

- edges: describe the sequencing of instructions (control
flow)

32
http://vinaytech.wordpress.com/2008/10/04/abstract-syntax-tree/

Exemples: Call graph

To represent a call graph we introduce an edge f → g if
the function f calls g
The call graph is cyclic if there are (directly or indirectly)
recursive functions

def g(x):
return 0 if x==0 else 1+h(x-1)

def h(x):
return 1 if x==0 else 2*g(x-1)

def f(x):
return h(x) + g(x)

33

Graph theory

What is a graph?

Paths and cycles in graphs

Representing and traversing graphs

Graphs in PYTHON

Exercises with graphs in PYTHON
34

Graph representation

If we identify the nodes by (consecutive) numbers,
we can represent the graph as a square adjacency
matrix

M[i,j] = 1 if there is edge from i to j

M[i,j] = 0 if there is no edge from i to j

or M[i,j] can contain the length/cost of the edge
(weighted graph)

35

Graph representation

Representation by adjacency lists

- for each vertex u: list/set of vertices v with
edges (u, v)

We can store the information in a dictionary:

- key in dictionary = node in graph

- value in the dictionary = list/set of adjacent
vertices

36

Graph representation

Representation by lists of pairs:

- for each edge from u to v we retain in the
list/set - the pair (u, v)

37

Depth-first search

The depth traverse of the graph is a pre-order
traverse.

After visiting the node, all directly adjacent
nodes are traversed (recursively) (if not already
visited)

Act as if directly adjacent nodes were inserted
into a stack.

38

Depth-first search

Let the graph below, with the adjacency lists ordered by
letters.The order of the lines from a to depth is as shown:

We can program: recursive function, accumulating the set
of visited nodes

39

Breadth-first search

Breadth-first traversal visits vertices in order of
minimum distance from the starting vertex

(in "waves" moving away from the starting
node)

Nodes not yet visited are put in a queue.

40

Breadth-first search

In the figure below, the minimum distance from vertex a is
indicated (vertices with longer distances are covered later)

An implementation: recursive function,
accumulating: the set of all visited nodes
frontier: the set of new vertices reached in the current round

41

Graph theory

What is a graph?

Paths and cycles in graphs

Representing and traversing graphs

Graphs in PYTHON

Exercises with graphs in PYTHON
42

Graphs in PYTHON
In PYTHON we can represent a graph using a dictionary
We have the graph G = (V, E), V = {a, b, c, d, e}, E = {ab, ac,
bd, cd, de}

graph = {
 "a" : {"b","c"},
 "b" : {"a", "d"},
 "c" : {"a", "d"},
 "d" : {"e"},
 "e" : {"d"}
}# {'a': {'b', 'c'}, 'b': {'d', 'a'}, 'c': {'d', 'a'}, 'd': {'e'}, 'e': {'d'}}

43

Displaying the vertices of a graph
To display the vertices of a graph held with a dictionary it is
required to display the keys of the dictionary.

graph = {
"a" : {"b","c"},
"b" : {"a", "d"},
"c" : {"a", "d"},
"d" : {"e"},
"e" : {"d"}

}
def displayV(graf):

return list(graf.keys())
print(displayV(graf)) # ['a', 'b', 'c', 'd', 'e']

44

Displaying the edges of a graph
import functools

def dispalyE(graph, edges = set()):
def f(acc,elem):

k, v = elem
def f_set(acc2,elem2):

edges.add((k,elem2))
functools.reduce(f_set, v, 0)

functools.reduce(f, graph.items(), 0)
return edges

print(dispalyE(graf))
{('a', 'c'), ('d', 'e'), ('a', 'b'), ('e', 'd'), ('b', 'a'), ('b', 'd'), ('c', 'a'),
('c', 'd')}

45

Adding a new vertex
graph = {
 "a" : {"b","c"},
 "b" : {"a", "d"},
 "c" : {"a", "d"},
 "d" : {"e"},
 "e" : {"d"}
}
def addV(graph, vertex):
 if(not vertex in graph):
 graph[vertex] = set()
 return graph
print(addV(graf, "f")) # {'a': {'c', 'b'}, 'b': {'d',
'a'}, 'c': {'d', 'a'}, 'd': {'e'}, 'e': {'d'}, 'f': set()}

46

Adding a new edge
def addE_directed(graph, edge):
 if (edge[0] in graph):
 graph[edge[0]].add(edge[1])
 else:
 graph[edge[0]]={edge[1]}
 if (not edge[1] in graph):
 graph[edge[1]] = set()
 return graph

print(addE_directed(grafph,("a","d")))
print(addE_directed(grafph,("f","g")))
{'a': {'b', 'c', 'd'}, 'b': {'d', 'a'}, 'c': {'d', 'a'}, 'd': {'e'}, 'e': {'d'}}
{'a': {'b', 'c', 'd'}, 'b': {'d', 'a'}, 'c': {'d', 'a'}, 'd': {'e'}, 'e': {'d'}, 'f':
{'g'}, 'g': set()}

47

Graph theory

What is a graph?

Paths and cycles in graphs

Representing and traversing graphs

Graphs in PYTHON

Exercises with graphs in PYTHON
48

Exercises

1. Let a graph be represented by the set of pairs
of adjacent vertices. Create the data
structure that holds information about the
graph in a dictionary.

Exemple:

Input: {(1, 3), (1, 2), (2, 4), (4, 1)}

Output: {2: {4}, 4: {1}, 1: {2, 3}, 3: set()}

49

Exercises
import functools
def construct_graph(pairs, dictionary = {}):

def f(acc, elem):
if (elem[0] in dictionary):

dictionary[elem[0]].add(elem[1])
else:

dictionary[elem[0]] = set({elem[1]})
if(not elem[1] in dictionary):

dictionary[elem[1]] = set()
functools.reduce(f, pairs, 0)
return dictionary

print(construct_graph({(1, 3), (1, 2), (2, 4), (4, 1)}))

50

Thank you!

51

Bibliografie

• The issue of the ratio of the number of relationships men
have with partners of the opposite gender to the number
of relationships women have with partners of the opposite
gender was taken from the Mathematics for Computer
Science course at the Massachusetts Institute of
Technology (from https://ocw.mit.edu/)

• The content of the course is mainly based on material from
previous years' LSD course, taught by Prof. Marius Minea,
Ph.D., Ph. Casandra Holotescu
(http://staff.cs.upt.ro/~marius/curs/lsd/index.html)

52

	Slide 1: Logic and Discrete Structures -LDS
	Slide 2
	Slide 3
	Slide 4: Graph theory
	Slide 5: Graph theory
	Slide 6: A challenge in sociology
	Slide 7: A challenge in sociology
	Slide 8: A challenge in sociology
	Slide 9: A challenge in sociology
	Slide 10
	Slide 11: What is a graph?
	Slide 12: What is a graph?
	Slide 13: What is a graph?
	Slide 14: Map of tram routes in Timisoara
	Slide 15: Graphs - general notions
	Slide 16: Graphs - general notions
	Slide 17: Directed and undirected graphs
	Slide 18: Graphs and relations
	Slide 19: A challenge in sociology
	Slide 20: A challenge in sociology
	Slide 21: A challenge in sociology
	Slide 22
	Slide 23: Paths in graphs
	Slide 24: Cycles in graphs
	Slide 25: Complete graphs and connected components
	Slide 26: Directed graphs: weakly connected and strongly connected
	Slide 27: Directed graphs: weakly connected and strongly connected
	Slide 28: Determination of connected components (undirected graph)
	Slide 29: Eulerian paths (in undirected graphs)
	Slide 30: Eulerian paths (in undirected graphs)
	Slide 31: Examples: maps as weighted graphs
	Slide 32: Exemples: Control flow graph
	Slide 33: Exemples: Call graph
	Slide 34
	Slide 35: Graph representation
	Slide 36: Graph representation
	Slide 37: Graph representation
	Slide 38: Depth-first search
	Slide 39: Depth-first search
	Slide 40: Breadth-first search
	Slide 41: Breadth-first search
	Slide 42
	Slide 43: Graphs in PYTHON
	Slide 44: Displaying the vertices of a graph
	Slide 45: Displaying the edges of a graph
	Slide 46: Adding a new vertex
	Slide 47: Adding a new edge
	Slide 48
	Slide 49: Exercises
	Slide 50: Exercises
	Slide 51
	Slide 52: Bibliografie

